Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460645

RESUMO

Enormous amounts of food resources are annually wasted because of microbial contamination, highlighting the critical role of effective food packaging in preventing such losses. However, traditional food packaging faces several limitations, such as low mechanical strength, poor fatigue resistance, and low water retention. In this study, we aimed to prepare nanocellulose hydrogels with enhanced stretchability, fatigue resistance, high water retention, and antibacterial properties using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), sodium alginate (SA), and tannic acid (TA) as raw materials. These hydrogels were applied in food packaging to extend the shelf life of refrigerated chicken. The structure and properties (e.g., mechanical, antibacterial, and barrier properties) of these hydrogels were characterized using different techniques. Fourier-transform infrared spectroscopy revealed the presence of hydrogen and ester bonds in the hydrogels, whereas scanning electron microscopy revealed the three-dimensional network structure of the hydrogels. Mechanical testing demonstrated that the SHNC/PVA/SA/TA-2 hydrogel exhibited excellent tensile properties (elongation = 160 %), viscoelasticity (storage modulus of 1000 Pa), and mechanical strength (compressive strength = 10 kPa; tensile strength = 0.35 MPa). Moreover, under weak acidic and alkaline conditions, the ester bonds of the hydrogel broke down with an increase in pH, improving its swelling and release properties. The SHNC/PVA/SA/TA-2 hydrogel displayed an equilibrium swelling ratio exceeding 300 %, with a release rate of >80 % for the bioactive substance TA. Notably, antibacterial testing showed that the SHNC/PVA/SA/TA-2 hydrogel effectively deactivated Staphylococcus aureus and Escherichia coli, prolonging the shelf life of refrigerated chicken to 10 d. Therefore, the SHNC/PVA/SA/TA hydrogels can be used in food packaging to extend the shelf life of refrigerated meat products. Their cost-effectiveness and simple preparation make them suitable for various applications in the food industry.


Assuntos
Galinhas , Hidrogéis , Polifenóis , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologia , Antibacterianos/química , Água , Ésteres , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química
2.
J Mater Chem B ; 12(16): 3917-3926, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38536012

RESUMO

The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.


Assuntos
Hidrogéis , Músculo Esquelético , Polifenóis , Álcool de Polivinil , Silicatos , Amido , Taninos , Taninos/química , Taninos/farmacologia , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Músculo Esquelético/efeitos dos fármacos , Animais , Amido/química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Silicatos/química , Silicatos/farmacologia , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
3.
Int J Biol Macromol ; 262(Pt 1): 129937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325683

RESUMO

Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.


Assuntos
Diabetes Mellitus , Nanofibras , Naftoquinonas , Animais , Camundongos , Álcool de Polivinil/farmacologia , Alginatos/farmacologia , Cicatrização , Antibacterianos/farmacologia
4.
Cryobiology ; 114: 104853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301951

RESUMO

Recovering and cryopreserving epididymal spermatozoa are suitable methods for preserving the genetic potential of livestock and endangered species. Regarding encouraging reports on the use of polyvinyl alcohol (PVA) in cryopreserving various cell types, we conducted this study to examine the impact of PVA on the post-thaw quality, longevity, and in vitro fertility of ram epididymal sperm. In the first experiment, ram epididymal spermatozoa were frozen in extenders containing 6 % glycerol and 0, 0.5, 1, 2, 5, 10, or 15 mg/ml of PVA. Polyvinyl alcohol at concentrations of 0.5, 1, and 2 mg/ml improved the motility and functional membrane integrity (FMI) of the sperm compared with the control group (P < 0.05). In the second experiment, we investigated whether PVA could partially substitute glycerol in the freezing extender. PVA was added at 0, 0.5, 1, and 2 mg/ml to the extenders containing 1 % or 2 % glycerol. After thawing, the sperm motility parameters of the group containing 1 mg/ml PVA and 2 % glycerol were significantly higher than those of the un-supplemented groups (P < 0.05). In the third experiment, the effect of PVA on the post-thaw sperm longevity were examined. Sperm were frozen in 3 extenders: one containing 6 % glycerol and 1 mg/ml PVA (Gly6P1), another containing 2 % glycerol and 1 mg/ml PVA (Gly2P1), and a control extender with 6 % glycerol. After thawing, the quality of the sperm was evaluated. Sperm were then diluted in human tubal fluid (HTF) and incubated at 37 °C for 3 h. Afterwards, the quality of the sperm was evaluated once more. The presence of PVA in the freezing extender improved motility parameters and FMI. Additionally, PVA-containing groups had lower proportions of capacitated and acrosome reacted sperm compared with the control group (P < 0.05). The Gly6P1 group performed better than the other two groups (P < 0.05). In the fourth experiment, sperm from the Gly6P1 and Control groups were used in the IVF process immediately after thawing (T0) and after a 3-h incubation at 37 °C in HTF (T3). Cleavage, blastocyst and hatching rates in both groups were similar at T0, but they were lower in the Control group at T3 (P < 0.05). In conclusion, PVA as an additive to the freezing extender significantly improves post-thaw motility, viability, acrosome integrity, longevity, and fertile lifespan of ram epididymal spermatozoa.


Assuntos
Glicerol , Preservação do Sêmen , Humanos , Masculino , Animais , Ovinos , Congelamento , Glicerol/farmacologia , Álcool de Polivinil/farmacologia , Longevidade , Criopreservação/métodos , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Sêmen , Espermatozoides , Crioprotetores/farmacologia
5.
Int J Biol Macromol ; 258(Pt 2): 129120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171436

RESUMO

Ultrasound (US)-mediated sonodynamic therapy (SDT) has received extensive attention in pathogen elimination for non-invasiveness and high spatial and temporal accuracy. Considering that hydrogel can provide a healing-friendly environment for wounds, in this work, hybrid hydrogels are constructed by embedding Ag doped TiO2 nanoparticles in chitosan-polyvinyl alcohol hydrogels for enhanced sonodynamic antibacterial therapy. With metal silver doped, TiO2 nanoparticles sonosensitivity is improved to generate more reactive oxygen species (ROS), which endows hybrid hydrogels with high-efficient antibacterial properties. In vivo results show that hybrid hydrogel dressing can prevent infection and promote wound closure within 2 days. The healing ratio excess 95 % with no pus produced at the end of treatment. The therapeutic mechanism was identified that heterojunction formed in Ag doped TiO2 facilitates the separation of charge carriers under US irradiation, leading to elevating ROS generation. The generated ROS promote hybrid hydrogels sonodynamic antibacterial therapeutic efficacy to thoroughly eliminate pathogen via disrupting bacterial cell membrane integrity, decreasing membrane fluidity and increasing membrane permeability. Besides, biofilm formation could be effectively inhibited. This work developed a hybrid hydrogel with amplified SDT effect for wound healing, which is expected to provide inspiration of hybrid hydrogels design and Ti-based nanomaterials sonosensitivity enhancement.


Assuntos
Quitosana , Infecções Estafilocócicas , Humanos , Quitosana/farmacologia , Staphylococcus aureus , Álcool de Polivinil/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Titânio/farmacologia , Antibacterianos/farmacologia , Bandagens , Hidrogéis/farmacologia , Infecções Estafilocócicas/tratamento farmacológico
6.
Biomacromolecules ; 25(2): 1228-1245, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38235663

RESUMO

Immediate control of excessive bleeding and prevention of infections are of utmost importance in the management of wounds. Cryogels have emerged as promising materials for the rapid release of medication and achieving hemostasis. However, their quick release properties pose the challenge of exposing patients to high concentrations of drugs. In this study, hybrid nanocomposites were developed to address this issue by combining poly(vinyl alcohol) and κ-carrageenan with whitlockite nanoapatite (WNA) particles and ciprofloxacin, aiming to achieve rapid hemostasis and sustained antibacterial effects. A physically cross-linked cryogel was obtained by subjecting a blend of poly(vinyl alcohol) and κ-carrageenan to successive freezing-thawing cycles, followed by the addition of WNA. Furthermore, ciprofloxacin was introduced into the cryogel matrix for subsequent evaluation of its wound healing properties. The resulting gel system exhibited a 3D microporous structure and demonstrated excellent swelling, low cytotoxicity, and outstanding mechanical properties. These characteristics were evaluated through analytical and rheological experiments. The nanocomposite cryogel with 4% whitlockite showed extended drug release of 71.21 ± 3.5% over 21 days and antibacterial activity with a considerable growth inhibition zone (4.19 ± 3.55 cm). Experiments on a rat model demonstrated a rapid hemostasis property of cryogels within an average of 83 ± 4 s and accelerated the process of wound healing with 96.34% contraction compared to the standard, which exhibited only ∼78% after 14 days. The histopathological analysis revealed that the process of epidermal re-epithelialization took around 14 days following the skin incision. The cryogel loaded with WNAs and ciprofloxacin holds great potential for strategic utilization in wound management applications as an effective material for hemostasis and anti-infection purposes.


Assuntos
Fosfatos de Cálcio , Criogéis , Álcool de Polivinil , Humanos , Ratos , Animais , Criogéis/química , Álcool de Polivinil/farmacologia , Carragenina/química , Cicatrização , Ciprofloxacina , Antibacterianos/farmacologia , Antibacterianos/química , Hemostasia , Etanol
7.
Jpn J Ophthalmol ; 68(1): 64-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966563

RESUMO

PURPOSE: To investigate the virucidal effects of a polyvinyl alcohol iodine, Saniode, against 16 types of human mastadenovirus (HAdV) causing ophthalmic, respiratory, gastrointestinal, urinary, and systemic infections. STUDY DESIGN: Laboratory investigation METHODS: Fifty microliters of Saniode were exposed to 10 µL each containing HAdV virus stock solution of 1 × 106 copies/µL of HAdV-1, -2, -3, -4, 5, -6, -7, -8, -11, -37, -53, -54, -56, -64, -81, and -85 for 10 s, 30 s, 1 min, and 3 min. After neutralization with 0.5% sodium thiosulfate, the mixture was diluted by ten-fold serial dilution and inoculated into 24 wells containing confluent A549 cell monolayers. Virucidal effects were calculated relative to the positive control on days 7-10 and observed until 30 days post-infection. RESULTS: Saniode satisfied the EN-14476 criterion for virucidal effects (>99.99%) for all HAdV types at all exposure times, including at 10 s on days 7 to 10 post-infection. All types of HAdVs that reacted for > 1 min achieved 99.99% reduction, including after 30 days. CONCLUSION: Saniode displayed virucidal effects against all tested HAdV types. Currently, with no specific medication available for HAdVs in ocular infection, this could be an option to prevent the spread of keratoconjunctivitis.


Assuntos
Iodo , Ceratoconjuntivite , Humanos , Álcool de Polivinil/farmacologia , Iodo/farmacologia , Adenoviridae , Soluções Oftálmicas/farmacologia
8.
J Cell Biochem ; 125(1): 79-88, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992216

RESUMO

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) used for transplantation; the number of cells in a single UCB is too small to quickly establish bone marrow (BM) implantation, and ex vivo expansion of HSCs has the potential to overcome this limitation. The purpose of this study is to explore the culture conditions conducive to the maintenance and expansion of hematopoietic stem and progenitor cells (HSPCs) and long-term hematopoietic stem cells (LT-HSCs) derived from human umbilical cord blood, compare the different effects of albumin (HSA) and polyvinyl alcohol (PVA), optimize the culture system using UM171 and investigate the molecular mechanism of PVA and UM171 promoting the expansion of primitive hematopoietic stem cells. CD34+ cells were purified from UCB using MacsCD34 beads, and then cultured in serum-free medium supplemented with cytokines for 12 days, with PVA or UM171 added according to experimental requirements; the relative percentage of different HSCs subsets after culture were detected by flow cytometry; CFU Assay Setup for detecting the multilineage differentiation potential of HSCs; RT-PCR detection of gene expression levels; reactive oxygen detection assessment of intracellular ROS levels. (1) The conditions of 20 ng/mlSCF, 100 ng/mlTPO, and 5% oxygen concentration are conducive to the maintenance of LT-HSCs. (2) Compared with HSA, PVA significantly increased the proportion of HSPCs and LT-HSCs, as well as dramatically promoted the expression of antioxidant enzymes and reduced the production of reactive oxygen species (ROS). (3) After adding UM171 to PVA-based medium, the proportion of HSPCs and LT-HSCs further increased, and downstream genes of Notch and Wnt pathways were selectively activated. (1) PVA may inhibit ROS production by upregulating the expression of antioxidant enzymes, which is beneficial for maintaining stemness and inhibiting differentiation of HSCs. (2) The antioxidant properties of PVA can delay differentiation, while UM171 can promote self-renewal by regulating the stem cell pathway, and the combination of them is beneficial for the maintenance and expansion of HSCs in vitro.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Álcool de Polivinil , Humanos , Álcool de Polivinil/farmacologia , Antígenos CD34/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Hematopoéticas , Diferenciação Celular , Oxigênio/metabolismo , Sangue Fetal , Células Cultivadas , Proliferação de Células
9.
Macromol Biosci ; 24(4): e2300401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154146

RESUMO

Shape memory polymer (SMP) vascular grafts are promising interventional vascular grafts for cardiovascular disease (CAD) treatment; However, hemocompatibility and biocompatibility, which are the critical issues for the SMP vascular grafts, are not systematically concerned. Furthermore, the water-induced SMP grafts are more convenient and safer than the thermally induced ones in case of the bioapplication. Herein, in this work, the new water-induced expanded bilayer vascular graft with the inner layer of crosslinked poly(ε-caprolactone) (cPCL) and the outer layer of water-induced SMP of regenerated chitosan/polyvinyl alcohol (RCS/PVA) are prepared by hot pressing and programming approaches. The results show that the inner and outer layer surfaces of the prepared grafts are smooth, and they exhibit good interfacial interaction properties. The bilayer grafts show good mechanical properties and can be expanded in water with a diameter expansion of ≈30%. When compared with commercial expanded polytetrafluoroethylene (ePTFE), the bilayer graft shows better hemocompatibility (platelet adhesion, hemolysis rate, various clotting times, and plasma recalcification time (PRT)) and in vitro and in vivo biocompatibility, which thus is a promising material for the vascular graft.


Assuntos
Enxerto Vascular , Água , Teste de Materiais , Prótese Vascular , Álcool de Polivinil/farmacologia , Politetrafluoretileno
10.
J Biomed Mater Res A ; 112(2): 180-192, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37694883

RESUMO

Accumulating evidence supports the role of cartilage tissue engineering in cartilage defect repair, but the biological function has yet to be fully explained. In this work, kartogenin (KGN), an emerging chondroinductive nonprotein small molecule, was incorporated into a composite hydrogel of polyvinyl alcohol/nano-hydroxyapatite (PVA/n-HA) to fabricate an appropriate microenvironment for tendon-bone healing after anterior cruciate ligament (ACL) reconstruction. KGN/PVA/n-HA composite hydrogel scaffolds were prepared by in situ synthesis and physical adsorption, followed by characterization under a scanning electron microscope. The scaffolds were transplanted into healthy New Zealand White (NZW) rabbits. It was confirmed that KGN/PVA/n-HA scaffolds were successfully prepared and exhibited good supporting properties and excellent biocompatibility. Unilateral ACL reconstruction was constructed with tendon autograft in NZW rabbits, and the morphology and diameter of collagen fiber were analyzed. The scaffolds were shown to promote ACL growth and collagen fiber formation. Furthermore, microcomputerized tomography analysis and bone formation histology were performed to detect new bone formation. KGN/PVA/n-HA scaffolds effectively alleviated cartilage damage and prevented the occurrence of osteoarthritis. Meanwhile, ligament-bone healing and bone formation were observed in the presence of KGN/PVA/n-HA scaffolds. In conclusion, these results suggest that the KGN/PVA/n-HA scaffolds can facilitate tendon-bone healing after ACL reconstruction and might be considered novel hydrogel biomaterials in cartilage tissue engineering.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Durapatita , Coelhos , Animais , Durapatita/farmacologia , Álcool de Polivinil/farmacologia , Colágeno , Reconstrução do Ligamento Cruzado Anterior/métodos , Tendões/cirurgia , Hidrogéis/farmacologia
11.
ACS Appl Mater Interfaces ; 16(1): 389-400, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117934

RESUMO

Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs). We showed that RIP treatments including O2, N2, or Ar at two radiofrequency powers, 50 and 100 W, improved ECFC adhesion compared to untreated PVA and to different degrees for each RIP treatment, but that the topographic and chemical changes responsible for the increased cell affinity dissipate in samples treated and allowed to age for 230 days. We characterized the effect of aging on RIP-treated PVA using an assay to quantify ECFCs on RIP-treated PVA 48 h after seeding, atomic force microscopy to probe surface topography, scanning electron microscopy to visualize surface modifications, and X-ray photoelectron spectroscopy to investigate surface chemistry. Our results show that after treatment at higher RF powers, the surface exhibits increased roughness and greater levels of charged nitrogen species across all precursor gases and that these surface modifications are beneficial for the attachment of ECFCs. This study is important for our understanding of the stability of surface modifications used to promote the adhesion of vascular cells such as ECFCs.


Assuntos
Células Endoteliais , Enxerto Vascular , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Plasma , Prótese Vascular , Etanol
12.
J Mech Behav Biomed Mater ; 148: 106219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951146

RESUMO

In this study, a three-component biofilm for rapid wound dressing consisting of polyvinyl alcohol (PVA)/tannic acid (TA)/with CuO/SiO2 with different percentages (0, 5, 10, and 15 wt% NPs) is evaluated. In addition to controlling bleeding and absorption of blood and wound secretions, it protects the damaged tissue from the attack of microbes. It protects against viruses and thus reduces the treatment time. Analysis of biofilms morphology is performed by Field emission scanning electron microscopy (FE-SEM), phases in biofilms were analyzed by X-ray diffraction (XRD) analysis, chemical bonds, and functional groups are analyzed by Fourier transform infrared (FTIR) spectroscopy, and mechanical tests are performed to evaluate the strength of the samples. The thermogravimetric analysis (TGA) is applied to estimate the thermal stability of the biopolymer films with various percentages of CuO/SiO2 nanoparticles. Also, antibacterial test, bioactivity of the biofilms, the percentage of swelling ratio, and porosity of the samples were examined by immersing the samples in simulated body fluid (SBF) and Phosphate-buffered saline (PBS) for 14 days in vitro. The composite makeup of the TA/PVA sample, comprising 15 wt % CuO/SiO2 and containing 15 wt% of nanoparticles, exhibited superior heat resistance compared to other samples by an increase of 50 °C. This improvement can be attributed to the nanoparticles reaching their saturation point. The swelling ratio was assessed in both SBF and PBS, and in both instances, the sample increased by up to 10 wt% before decreasing, indicating the saturation of the nanoparticles.


Assuntos
Materiais Biocompatíveis , Álcool de Polivinil , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Dióxido de Silício/farmacologia , Polímeros , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Curr Pharm Des ; 29(31): 2489-2500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881070

RESUMO

BACKGROUND: Diclofenac sodium has a short half-life (about 1.5 hours), requiring repeated administration, and as a result, serious complications, such as GI bleeding, peptic ulcer, and kidney and liver dysfunction, are generated. Hence, a sustained/controlled drug delivery system is needed to overcome the complications caused by the administration of diclofenac sodium. AIMS: This study aimed to fabricate and evaluate carbopol/polyvinyl alcohol-based pH-sensitive hydrogels for controlled drug delivery. OBJECTIVE: pH-sensitive carbopol/polyvinyl alcohol graft-poly(acrylic acid) hydrogels (Cp/PVA-g-PAa hydrogels) were developed for the controlled delivery of diclofenac sodium. METHODS: The combination of carbopol/polyvinyl alcohol, acrylic acid, and ethylene glycol dimethacrylate was used as polymer, monomer, and cross-linker, respectively. The effects of the formulation's composition on porosity, swelling index, and release pattern of diclofenac sodium from the developed hydrogels were investigated. RESULTS: An increase in porosity and swelling was observed with the increasing amounts of carbopol and acrylic acid, whereas polyvinyl alcohol showed the opposite effect. Due to the formation of a highly viscous system, the drug release decreased with the increasing concentrations of carbopol and polyvinyl alcohol while increased with increasing acrylic acid concentration. The pH-responsive properties of the fabricated hydrogels were demonstrated by dynamic swelling and drug release studies at three different pH values. Higher dynamic swelling and diclofenac sodium (model drug) release were found at high pH values compared to low pH values, i.e., pH 7.4 > 4.6 > 1.2, respectively. Cytotoxicity studies reported no toxic effect of the prepared hydrogels, thus indicating that the prepared hydrogels are safe to be used on clinical basis. CONCLUSION: The prepared carbopol/polyvinyl alcohol crosslinked hydrogel can be used as a promising carrier for the controlled release of drugs.


Assuntos
Diclofenaco , Álcool de Polivinil , Humanos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
14.
J Appl Biomater Funct Mater ; 21: 22808000231198803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811589

RESUMO

PURPOSE: Bleeding is a leading cause of mortality and morbidity in the trauma and surgery field, using effective hemostatic agents can help us reduce bleeding especially in parenchymal hemorrhage. Nowadays polyvinyl alcohol (PVA) is known as a safe candidate for wound dressing and maybe a hemostatic agent. PVA-based hydrogel is a popular biocompatible material in the biomedical field especially when it has high water absorption. In this study, we investigated the PVA hydrogel's mechanical and biological properties as well as its hemostatic potential in parenchymal bleeding. METHODS: PVA hydrogel had made by the freeze-thawing approach, we used PVA hydrogel in comparison to standard treatment to investigate hemostatic potency. Also, we performed MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) tests to survey PVA cellular toxicity. After an acute liver injury, two groups of 12 rats were treated with PVA hydrogel or standard treatment with sterile gauze. The results including the time and volume of bleeding, and the time and survival rate of the rats were measured and compared. RESULTS: We saw that PVA hydrogel was safe with no cellular toxicity in the MTT assay. Regarding efficacy, PVA hydrogel increased rats' survival after bleeding from 75% to 91.7%, and decreased bleeding time (p: 0.015), and bleeding volume (p: 0.03) compared to the control group. CONCLUSION: Polyvinyl alcohol is safe. It has good biological properties with no cellular toxicity and has a significant hemostatic effect and can be regarded in control of parenchymal hemorrhage.


Assuntos
Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Álcool de Polivinil/farmacologia , Hidrogéis/farmacologia , Cicatrização , Hemorragia/tratamento farmacológico
15.
Biomacromolecules ; 24(11): 4831-4842, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37677087

RESUMO

A diabetic foot ulcer is a common high-risk complication in diabetic patients, but there is still no universal dressing for clinical treatment. In this study, a novel dual-functional sulfated galactofucan polysaccharide/poly(vinyl alcohol) hydrogel (DPH20) is developed during freeze-thaw cycles. Experimental results indicated that DPH20 had a high specific surface area, a dense porous structure, and a good swelling property, which could effectively adsorb the exudates and keep the wound moist. Furthermore, DPH20 exhibited remarkably recruited macrophage capability and accelerated the inflammation stage by improving the expression of the mRNA of CCL2, CCR2, and CCL22 in macrophages. DPH20 could promote cell migration and growth factor release to accelerate tube formation under hyperglycemic conditions in cell models of L929s and HUEVCs, respectively. Significantly, DPH20 accelerates the reconstruction of the full-thickness skin wound by accelerating the recruitment of macrophages, promoting angiogenesis, and releasing the growth factor in the diabetic mouse model. Collectively, DPH20 is a promising multifunctional dressing to reshape the damaged tissue environment and accelerate wound healing. This study provides an efficient strategy to repair and regenerate diabetic skin ulcers.


Assuntos
Diabetes Mellitus , Hidrogéis , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Macrófagos , Peptídeos e Proteínas de Sinalização Intercelular
16.
Int J Biol Macromol ; 252: 126427, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598821

RESUMO

In this work, nanocellulose (CNC) from waste water chestnut (WCT) shell was firstly used for preparing nanocomposite films, by using ChunJian peel extract (CJPE) as a green reducing agent to synthesize silver nanoparticles (AgNPs), and then loading them into polyvinyl alcohol-nanocellulose (PVA-CNC) matrix, a multifunctional nanocomposite material that could be used in food packaging was developed. The prepared films were tested for mechanical strength, barrier properties, thermal properties, antibacterial, antioxidant and biocompatibility through various characterizations. The PVA-CNC-AgNPs-CJPE film had good thermostability, mechanical strength, barrier properties, and biocompatibility. Compared with pure PVA film and PVA-CNC film, PVA-CNC-AgNPs-CJPE could shield over 95 % of the UVB (320-275 nm) spectrum and UVC (275-200 nm) spectrum and most of the UVA (400-320 nm). By disk diffusion analysis, the inhibition zones of PVA-CNC-AgNPs-CJPE film against E. coli, P. aeruginosa, S. aureus and E. faecalis were 22.3 mm, 25.0 mm, 22.0 mm and 19.3 mm, respectively. The milk antibacterial simulation test confirmed that PVA-CNC-AgNPs-CJPE film could effectively limit bacterial reproduction and prolong the shelf life of milk. PVA-CNC-AgNPs-CJPE film had excellent UV barrier properties, good antioxidant properties and high-efficiency antibacterial activity, which is expected to be widely used in sustainable nanocomposite food packaging.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Álcool de Polivinil/farmacologia , Antioxidantes/farmacologia , Prata/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia
17.
Int J Biol Macromol ; 253(Pt 1): 126602, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652316

RESUMO

Electrospinning is an advanced method used for developing wound dressings. Biopolymer-based electrospun mats have been extensively studied in tissue engineering due to their similarity to the extracellular matrix. In this study, electrospun poly(vinyl alcohol)/chitosan/silk fibroin (PChS) mat demonstrated improved mechanical properties, including tensile strength, strain at break, and Young's modulus, compared to electrospun poly(vinyl alcohol) and poly(vinyl alcohol)/chitosan mats. Similarly, the swelling capability, thermal stability, and hydrophilicity were higher in the PChS mat compared to the other ones. Hence, the PChS mat was selected for further investigation. Ciprofloxacin (CIP) was added to the PChS electrospinning solution at 5 % and 10 % concentration, and deferoxamine (DFO) was immobilized on CIP-loaded mats at 1 and 2 g/L concentration using a polydopamine linker. Evaluating mats with the dimensions of 1 × 1 cm2 showed that those containing 5 % and 10 % CIP exhibited bactericidal activity against Escherichia coli and Staphylococcus aureus. Moreover, Human dermal fibroblast cells were compatible with the fabricated mats, as confirmed by the MTT assay. Finally, drug-loaded mats had a positive effect on wound healing in a scratch test, and mats with 10 % CIP and 2 g/L DFO showed the highest effect on promoting wound healing, indicating potential for use as a wound dressing.


Assuntos
Quitosana , Nanofibras , Humanos , Ciprofloxacina/farmacologia , Quitosana/farmacologia , Antibacterianos/farmacologia , Desferroxamina/farmacologia , Seda/farmacologia , Álcool de Polivinil/farmacologia , Cicatrização
18.
Biopolymers ; 114(10): e23562, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421643

RESUMO

Polymeric barrier membranes are used in periodontal applications to prevent fibroblastic cell migration into the cavities of bone tissue and to properly guide the proliferation of tissues. In this study, the fabrication, characterization, bioactivity, and in vitro biological properties of polyvinyl alcohol-based nanofibrous membranes containing nano-sized 45S5 bioactive glass (BG) loaded with chlorhexidine (CH) gluconate with biocompatible, bioactive, and antibacterial properties for using as dental barrier membranes were investigated. Nanofibrous membranes with an average fiber diameter, pore size, and porosity of 210 nm, 24.73 µm, and 12.42%, respectively, were loaded with 1% and 2% CH, and the release profile was investigated. The presence of BG in the membranes promoted fibroblastic proliferation and the presence of CH provided antibacterial properties. Nanofibrous membranes exhibit a high ability to restrict bacterial growth while fulfilling the necessary conditions for use as a dental barrier thanks to their low swelling rates, significant surface bioactivities, and appropriate degradation levels.


Assuntos
Regeneração Tecidual Guiada , Nanofibras , Álcool de Polivinil/farmacologia , Clorexidina/farmacologia , Regeneração Óssea , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia
19.
Food Chem ; 427: 136691, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390740

RESUMO

Foodborne pathogens seriously endanger people's health and cause significant economic losses. Therefore, it is of great significance to design potent packaging materials with the function of alleviating food spoiling and extending shelf life. Here, three BODIPY derivatives (named as N-BDPI, B-BDPI and P-BDPI) were synthesized by substituting the 8-position of BODIPY with naphthalene, biphenyl and pyridine groups, respectively, and their photophysical properties as well as antibacterial capacities were characterized. The results demonstrated that N-BDPI had the best singlet oxygen generation ability and could completely kill S. aureus under light irradiation with the minimum inhibitory concentration of only 50 nmol/L. In addition, 1.0% BDPI@PVA/AL composite film was fabricated by doping N-BDPI into polyvinyl alcohol (PVA) and alkaline lignin (AL) exhibited high antibacterial activity on Gram-positive bacteria. The coating of strawberries with 1.0% BDPI@PVA/AL film not only effectively inhibited the mildew of strawberries, but also extended their shelf life.


Assuntos
Lignina , Álcool de Polivinil , Humanos , Álcool de Polivinil/farmacologia , Lignina/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Embalagem de Alimentos
20.
Biomater Adv ; 153: 213530, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356283

RESUMO

Biocompatible fibrous scaffold containing polyvinyl alcohol (PVA), 70S30C bioactive glass (BG), silver (Ag) nanoparticles and curcumin (Cur) was fabricated through electrospinning method. Scanning electron microscope (SEM) and Field emission scanning electron microscopy (FESEM) were employed to investigate the morphological characteristics of the scaffolds. In addition, biodegradability, hydrophilicity, and contact angle were studied as criteria for evaluating physical properties of the scaffolds. Tensile strength was reported to be 0.971 ± 0.093 MPa. Also, the viability of fibroblasts after 7 days of cell culture was 93.58 ± 1.36 %. The antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria was illustrated using inhibition zones of 13.12 ± 0.69 and 14.21 ± 1.37 mm, respectively. Histological results revealed that tissue regeneration after 14 days of surgery was much higher for the dressing group compared to the blank group. According to the obtained results, the authors introduce the PVA-BG-Ag-Cur scaffold as a promising candidate for skin tissue engineering applications.


Assuntos
Curcumina , Nanopartículas Metálicas , Álcool de Polivinil/farmacologia , Curcumina/farmacologia , Nanopartículas Metálicas/uso terapêutico , Prata/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...